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S E M I B O U N D E D  B O D Y  W I T H  A N  I N T E R N A L  C Y L I N D R I C A L  

H E A T  S O U R C E  
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A solut ion is obtained to the p r o b l e m  of t r a n s i e n t  heat  conduct ion in a semibounded  body both 
with an in te rna l  cy l i nd r i ca l  hea t  s o u r c e  and with cons tan t  t e m p e r a t u r e s  at  both body and 
cy l inde r  s u r f a c e s .  E x p r e s s i o n s  a r e  de r ived  fo r  the t e m p e r a t u r e  field and the r a t e  of 
hea t  flow. 

It is required to solve the differential equation of heat conduction within the region y _> 0 (Fig. i) 

bounded inside by an infinitely long circular cylindrical surface with radius 0 and the axis parallel to plane 
y = 0, with the following constraints: 

t (x, s ,  o) = to, (1)  

t (x,  o,  "0 = to, (2) 

t (x, co, ~) = to, (3) 

t(x, y, ~)].~.~r = ~,  (4) 

where F is the circular contour with radius p, and with constant thermophysical properties of the medium 
within the region y > 0. 

An engineering analog of this problem is the transient heat transfer from an underground pipeline 
with a liquid or gaseous heat carrier to the surrounding soil The steady-state temperature field and the 
rate of heat flow are in this case described by the Forchheimer equations [I]. The solution to the simplified 
version of this problem (isothermal cylinder in an infinitely large body),is well known [2, 3]. As to inte- 
grating the equation of heat conduction with the constraints (1)-(4), this has been done in [4]. In order to ar- 
rive at the results in [4], it is necessary to have tabulated first the values of an intricate function of two 
variables. 

Temperature Field. The well-known relation in [3, 5] describes the temperature field in an infinitely 
large body due to a momentary cylindrical surface heat source. Accordingly, the integral with respect to 
time in this expression will represent the temperature distribution due to a constant cylindrical heat source. 

We will now examine the following function which represents, in dimensionless variables, a superposition 
of such a source and a mirror-symmetrical sink on the other side of the x-axis, the power of both varying 
with time: 

Fo 

O (r, R, Fo) = ~ ~ (u) exp 4 (Fo - -  u) 2 ( F o -  7 u) 
0 

- - exp  4 ( F o - - u )  2 ( F o - - u )  F o - - u  ' (5) 
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where  

1 1 
r = - -  / x  2 + (Y'o - y ) 2  ~ = - -  V x~ + (v'o + y)2. 

9 ' 9 

and the dimensionless radius-vectors r, R in Cartesian coordinates are 

0(r, R, F o ) =  t (x,  g, ~ ) - - t o  , F o - -  at  
t ,  - -  t o p 3 

We note that expression (5), which represents the linear sum of integrals in the equation of heat 
conduction, satisfies this equation and, with a change to dimensionless variables, also the conditions (i)- 
(3). It remains now to determine the unknown function ~0(Fo) so as to satisfy the boundary condition (4). 
Then, according to the unicity theorem, expression (5) will be the solution to the given constraint problem. 

Condition (4) can also be written as 

0(1, R~, F o ) =  I, (6) 

where  R 1 = R[ r  =l. Since 2Y0-1 _< R 1 _< 2y 0 + 1, hence condi t ion (6) can  be r ea l i zed  only app rox ima te ly  
- m o r e  a c c u r a t e l y  as  the ord ina te  Y0 i n c r e a s e s  r e l a t ive  to the rad ius  of the heat  sou rce .*  We will  a s sume  
that  Y0 is suf f ic ient ly  l a rge  to make  

0(1, R,, Fo)~ .0(1 ,  29o, F o ) =  1. (7) 

R e f e r r i n g  (5) to points on the c i r c l e  with rad ius  r = 1 and cons ide r ing  condit ions (7), we obtain the 
fol lowing V o l t e r r a  in tegra l  equat ion of the f i r s t  Mnd of convolution:  

Fo 

1 [exp 1 
1 : :  4a f ( p ( u )  ( 2 ( F o - - u )  ) 1~ 

0 

- -  exp 4 (Fo - -  u) I~ Fo - -  u 

1 ) 
2 (Fo --- u) 

du (8) 
._. Fo - -  u 

Applying the Lap lace  t r a n s f o r m a t i o n  to both s ides  of Eqs .  (5) and (8), and applying the convolut ion 
t h e o r e m ,  we have 

(r, R, s) = ~ 4 ~  [21~ (V-s) K o (r V-s) - 2Io (V's) Ko (R V-s)l, 

1 
= ~ 4 ~  [21~ (! s )  K 0 (Vs)  - -  21o ( I / s ) K  o (29o V~)[, 

S 

(9) 

(lO) 

where  0-(r, R, s) and ~(s)  a re  the t r a n s f o r m s  of the r e spec t i ve  funct ions .  

A s imul taneous  solut ion of Eqs .  (9) and (10) y ie lds  

O(r, R,  s) = Ko(r  K s )  - -  K o ( R V - s )  (11) 
s [K0 ( K s )  - K0 (2vo V s ) l  

The or ig ina l  funct ion 0(r, R, Fo) is found by the Melin i nve r s ion  fo rmu la .  In o r d e r  to converge  the 
complex  in t eg ra l  to a r ea l  one, we use a we l l -known contour  of the Hankel type which joins the b r a n c h  
points  s = 0 and s = ~ of the in tegrand  funct ion with a cut  along the negat ive i m a g i n a r y  s emiax i s  (see, e.g. ,  
F igs .  15 and 12, [5]). Continuing fu r t he r  by the s t andard  p r o c e d u r e  of in tegra t ion  in a complex  plane and 
by using the p r o p e r t i e s  of Besse l  funct ions ,  we find 

0 (r, R, Fo) In (R/r) 2 f e - ~  Vo 
In 2y 0 a . 

0 

x [J0(z) - -  Jo(2YoZ)] [Yo(rz) - -  Yo(RZ)] - -  [Jo(rZ) - -  Jo(RZ)] [Y0(z) - -  Yo(2yoz)] dz (12) 
[Jo (z) - -  do (2yoz)l ~ + [Yo (z) - -  Yo (2goZ)] ~ . z 

Rate of Heat  Flow. In the sense  of a s sumpt ion  (7), the s ink field is cons tan t  within the su r f ace  r eg ion  
r = 1. The total  field in this r eg ion  b e c o m e s  then cy l ind r i ca l  and the r a t e  of heat  f low f r o m  a unit  of sou rce  

* As a rule ,  pipelines a re  bu r i ed  at  depths much  g r e a t e r  than the i r  rad ius .  
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length is 

0 0 !  
= --2~(t~ -- to) - 7 -  

o r  
(13) 

We a l so  note that, s ince  R [ r  =l = 2Y0 has been  a s sumed  in (7), 

OR = o. 
Or r=~ 

(14) 

Di f fe ren t i a t ing  (12), taking into accoun t  (14) and b e a r i n g  in mind  that  [6] 

2 
z []~ (nz) go (nz) - -  Jo (nz) g~ ( n z ) ]  = - - ,  

we obta in  
ao 

2~ + 4 f e -~' zo 2/(ztz) -t- Yo (2yoz) Y~ (z) - -  Yl (z) Yo (2yoZ)__ dz, 
q In 2yo J [Jo (z) - -  Jo (2yoZ)] ~ @ [Y0 (z) - -  Yo (2YoZ)] 2 

(15) 
0 

where q = Q/[X(t T-t0) ] is the dimensionless rate of heat flow. 

Estimating the Error of the Solution. An elementary analysis will show that the integrals in (12) and 

(15) will tend to zero as Fo ~,o. Consequently, the expressions 

_, In (R/r) 2z~ (16) 
Oss ln2yo ' qss- -  ln2y o 

r e p r e s e n t  the s t e a d y - s t a t e  componen t s  of the d i m e n s i o n l e s s  t e m p e r a t u r e  and hea t - f low ra te ,  r e s p e c t i v e l y .  
As has  been  indicated  e a r l i e r ,  this p r o b l e m  has  an exact  s t e a d y - s t a t e  so lu t ion  ( F o r c h h e i m e r  equat ions) .  
These  f o r m u l a s  can  be e x p r e s s e d  in our  nota t ion as fol lows:  

Oss = In (R/r) , q;s = 2~x (17) 
In (Yo -k ]/Yg + 1) In (Yo -i- ] / ~  + 1) 

The d i s c r e p a n c y  be tween  (16) and (17), quant i ta t ive ly  negl igible  when ~0 >> 1, is explained by the in -  
exac tnes s  of condi t ion (7). The r e l a t ive  e r r o r  6 in the d i m e n s i o n l e s s  t e m p e r a t u r e  and in the d i m e n s i o n l e s s  
hea t - f low ra t e  acco rd ing  t6 ca lcu la t ions ,  is v e r y  sma l l  a l r e a d y  at s m a l l  va lues  of Y0 and d e c r e a s e s  fas t  
with i n c r e a s i n g  Y0. Thus ,  we have 6 = 0.015 at Y0 = 3 and 5 = 0.004 at Ya = 5. 

A c o r r e c t  eva lua t ion  of the e r r o r  in  the t r ans i en t  so lu t ion  is v e r y  difficult .  F o r  a rough  e s t ima te ,  
however ,  we wi l lu t i l i ze  the fol lowing f e a t u r e s  in the t rend of ~unctions (12) and (15). 

1. F r o m  the r e l a t i o n  between the o r ig ina l  and i ts  t r a n s f o r m  

O(r, R, O)=  lim sff(r, R, s) 
S~c~ 

and with the a sympto t i c  f o r m u l a  fo r  MacDonald funct ions  

V ~v~ --z 
/ f ~  (z)  = - ~ -  e , 

one can  find that  

i r = l ,  
O(r' R' 0 ) = { 0  r ~ , l .  

Thus,  Eq. (12) and, t h e r e f o r e ,  a l so  i ts  par t ia l  de r iva t ive  (15) const i tu te  the exac t  so lut ion to the 
p rob l em at the t ime t = 0, b e c a u s e  the c ons t r a in t s  a re  sa t i s f ied  p r e c i s e l y  when Fo  = 0. The phys ica l  
mean ing  of this r e s u l t  is that  the ef fec t  of a heat  s o u r c e  and a heat  s ink on the t e m p e r a t u r e  at the i r  con-  
t ou r s ,  and vice  v e r s a ,  is  negl igible  a f te r  s h o r t  per iods  of t ime.  The d i m e n s i o n l e s s  t e m p e r a t u r e  at the 
s o u r c e  contour  depa r t s  f r o m  unity,  on the o ther  hand, a f te r  a per iod  of t ime when the t e m p e r a t u r e  func -  
t ion of the s ink b e c o m e s  app rec i ab ly  d i f f e ren t  on the s o u r c e  contour  at d i f fe ren t  dis l ances  f r o m  the s ink 
cen te r .  

2. Solutions (12) and (15) as well as certain yet unknown functions representing the exact solution to 
the problem are, from'the physical viewpoint, monotonic (in the narrow sense) functions on the interval 
O< F o <  ~o. 
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Fig. i .  Scheme of prob-  
lem. 

Thus, (12) and (15), which are the exact solution to the problem for  Fo = 0, contain some relative e r -  
r o r  when Fo = .o. On the basis of the additional considerat ion (in the paragraph on the rate of heat flow), it 
may  be assumed that the relative e r r o r  is maximum in the s teady-s ta te  case and does not exceed the e r r o r  
on the interval  0 < Fo < ,r 
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0ss, qss 

N O T A T I O N  

is the temperature ;  
is the initial temperature ;  
is the temperature  at the surface of a cylindrical  heat source;  
are  the linear space coordinates;  
is the ordinate of the source center;  
is the radius of the source;  
are  the dimensionless rad ius -vec tors  of a field point; 
~s the ordinate of the source center,  with p as  the charac te r i s t i c  dimension; 
~s the time; 
~s the power of heat source and heat sink; 
~s the thermal  conductivity; 
is the thermal  diffusivity; 
is the rate of heat flow from unit of source length; 
is the dimensionless rate of heat flow f rom unit of source  length; 
are the s teady-s ta te  components of the dimensionless temperature  and the dimensionless 
heat-flow rate,  respect ively 

1~ 

2 o  

3. 
4. 
5. 
6. 
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