A PROBLEM OF TRANSIENT HEAT CONDUCTION IN A
SEMIBOUNDED BODY WITH AN INTERNAL CYLINDRICAL
HEAT SOURCE

I. A, Ioffe UDC 536.2.01

A solutionis obtained to the problem of transient heat conductionin a semibounded body both
with an internal cylindrical heat source and with constant temperatures at both body and
cylinder surfaces. Expressions are derived for the temperature field and the rate of
heat flow.

It is required to solve the differential equation of heat conduction within the region y = 0 (Fig. 1)
bounded inside by an infinitely long circular cylindrical surface with radius p and the axis parallel to plane
y =0, with the following constraints:

tx, 4, 0) = £y, (1)
tx, 0, 1) = &, (2)
t(x, oo, T) = t,, (3)
L 9 D, ger = tos (4

where T is the circular contour with radius p, and with constant thermophysical properties of the medium
within the region y = 0.

An engineering analog of this problem is the transient heat transfer from an underground pipeline
with a liquid or gaseous heat carrier to the surrounding soil. The steady-state temperature field and the
rate of heat flow are in this case described by the Forchheimer equations [1]. The solution to the simplified
version of this problem (isothermal cylinder in an infinitely large body) is well known [2, 3]. As to inte-
grating the equation of heat conduction with the constraints (1)~@), this has been done in [4]. In order to ar-
rive at the results in [4], it is necessary to have tabulated first the values of an intricate function of two
variables.

Temperature Field. The well-known relation in [3, 5] describes the temperature field in an infinitely
large body due to a momentary cylindrical surface heat source. Accordingly, the integral with respect to
time in this expression will represent the temperature distribution due to a constant cylindrical heat source.
We will now examine the following function which represents, in dimensionless variables, a superposition
of such a source and a mirror-symmetrical sink on the other side of the x-axis, the power of both varying
with time:

R L e

R+ 1 R du
— —_ ] =
exp ( 4 (Fo — u) ) 0( 2(Fo — u) )J Fo—u ' ()
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where

1 2 1 7,7 a9 1 T L e
r= —p*v’x2 TG—9. R=—V¥ 4 gt oP

and the dimensionless radius-vectors r, R in Cartesian coordinates are
0(r, R, FO):MJ_M, Fo — %%
Iy — 1, o

We note that expression (5), which represents the linear sum of integrals in the equation of heat
conduction, satisfies this equation and, with a change to dimensionless variables, also the conditions (1)-
(3). It remains now to determine the unknown function ¢ (Fo) so as to satisfy the boundary condition @).
Then, according to the unicity theorem, expression (5) will be the solution to the given constraint problem.

Condition (4) can also be written as

8(1, Ry, Fo) =1, (6)

where R; = er —{. Since 2y,—-1 < Ry =<2y, + 1, hence condition (6) can be realized only approximately
— more accurately as the ordinate y, increases relative to the radius of the heat source.* We will assume
that y, is sufficiently large to make

8(1, Ry, Fo)=0(1, 24, Fo) = 1. (7

Referring (5) to points on the circle with radius r = 1 and considering conditions (7), we obtain the
following Volterra integral equation of the first kind of convolution:

Fo

“:711?0 e [eXP(_ 2(F01—— ) >[°( 2(F°1"‘”? )

— - - 8
exp ( 4 (Fo—uw ) lo Fo—u )] Fo—u ®

Applying the Laplace transformation to both sides of Eqs. (5) and (8), and applying the convolution
theorem, we have

5, R 9~ SEL 121, (/) K, (rV5) — 2, (V5 K, (RY/S)) (9)
% ~ 54(;) 21,0 °5) K, (V5) — 20, (V) K,y 295 V5 )1, (10)

where §(r, R, s) and ¢(s) are the transforms of the respective functions,

A simultaneous solution of Eqs. (9) and (10) yields

T _ K (rV's) — K (RVs) 11
R T 0 K @n VT .

The original function 4(r, R, Fo) is found by the Melin inversion formula. In order to converge the
complex integral to a real one, we use a well-known contour of the Hankel type which joins the branch
points s = 0 and s = « of the integrand function with a cut along the negative imaginary semiaxis (see, e.g.,
TFigs. 15 and 12, [5]). Continuing further by the standard procedure of integration in a complex plane and
by using the properties of Bessel functions, we find

o

_In@Rin 2 * ot Fo
0(r, R, Fo) = ~—1r1 200 p- (5 e
U6 — 20 1Y fr2) — YR — Llrd) — IRV &) — Y )] de -
’ o (@)—J 2y + [Ye(2) — Y, (2021 ) N2

Rate of Heat Flow. In the sense of assumption (7), the sink field is constant within the surface region
r =1, The total field in this region becomes then cylindrical and the rate of heat flow from a unit of source

* As a rule, pipelines are buried at depths much greater than their radius.
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length is

Q= (._zmx_‘?i) — o, —1) 8| (13)
or = or |,y

We also note that, since R|p—; =2y, has been assumed in (7),

OR
or

= 0. (14)

r=1

Differentiating (12), taking into account (14) and bearing in mind that [6]
2
z[J1(n2) Y, (n2) — Jy(n2) Yy (n2)] = —

we obtain

20, [ ere 20) + 0020 Yile) — h) Ya(200)
In 2y,
¢

= Ty, [0 @) — 4o Qud)l -+ [V, (2) — Y (2021

where g = Q/ [AtT —1;)] is the dimensiénless rate of heat flow.

Estimating the Error of the Solution. An elementary analysis will show that the integrals in (12) and
(15) will tend to zero as Fo —«. Consequently, the expressions
_ In(R/r) _ (16)
In 2y,

88 1n 2 yo 8§

represent the steady-state components of the dimensionless temperature and heat-flow rate, respectively.
As has been indicated earlier, this problem has an exact steady-state solution (Forchheimer equations),
These formulas can be expressed in our notation as follows:

« In(R/r)

2n
3 — , q E=
U+ VE+D T g+ Vgt D
The discrepancy between (16) and (17), quantitatively negligible when y3 > 1, is explained by the in-
exactness of condition (7). The relative error ¢ in the dimensionless temperature and in the dimensionjess
heat-flow rate according td calculations, is very small already at small values of y, and decreases fast
with increasing y,. Thus, we have § = 0.015 at y; =3 and 6 = 0.004 at y; = 5.

(17

A correct evaluation of the error in the transient solution is very difficult. For a rough estimate,
however, we will utilize the following features in the trend of functions (12) and (15).

1. From the relation between the original and its transform

8(r, R, 0) = lims8(r, R, s)

and with the asymptotic formula for MacDonald functions
-
K’v (Z) = l/g e -,

one can find that

o, R O=[1 7=T
i 0 r>1.

Thus, Eq. (12) and, therefore, also its partial derivative (15) constitute the exact solution to the
problem at the time t = 0, because the constraints are satisfied precisely when Fo = 0. The physical
meaning of this result is that the effect of a heat source and a heat sink on the temperature at their con-
fours, and vice versa, is negligible after short periods of time. The dimensionless temperature at the
source contour departs from unity, on the other hand, after a period of time when the temperature func-
tion of the sink becomes appreciably different on the source contour at different distances from the sink
center,

2. Solutions (12) and (15) as well as certain yet unknown functions representing the exact solution to
the problem are, from the physical viewpoint, monotonic (in the narrow sense) functions on the interval
0 < Fo< =,
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Thus, (12) and (15), which are the exact solution to the problem for Fo =0, contain some relative er-
ror when Fo = e, On the basis of the additional consideration (in the paragraph on the rate of heat flow), it
may be assumed that the relative error is maximum in the steady-state case and does not exceed the error
on the interval 0 < Fo < .

NOTATION
t is the temperature;
t is the initial temperature;
tr is the temperature at the surface of a cylindrical heat source;
X, ¥ are the linear space coordinates;
Yo is the ordinate of the source center;
P is the radius of the source;
r, R are the dimensionless radius~-vectors of a field point;
Yo is the ordinate of the source center, with p as the characteristic dimension;
T is the time;
¢ (Fo) is the power of heat source and heat sink;
A is the thermal conductivity;
a is the thermal diffusivity;
Q is the rate of heat flow from unit of source length;
q is the dimensionless rate of heat flow from unit of source length;
0sgs Uss are the steady-state components of the dimensionless temperature and the dimensionless

heat-flow rate, respectively
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